Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach.

نویسندگان

  • Janez Jamsek
  • Milan Palus
  • Aneta Stefanovska
چکیده

In the natural world, the properties of interacting oscillatory systems are not constant, but evolve or fluctuating continuously in time. Thus, the basic frequencies of the interacting oscillators are time varying, which makes the system analysis complex. For studying their interactions we propose a complementary approach combining wavelet bispectral analysis and information theory. We show how these methods uncover the interacting properties and reveal the nature, strength, and direction of coupling. Wavelet bispectral analysis is generalized as a technique for detecting instantaneous phase-time dependence for the case of two or more coupled nonlinear oscillators whereas the information theory approach can uncover the directionality of coupling and extract driver-response relationships in complex systems. We generate bivariate time-series numerically to mimic typical situations that occur in real measured data, apply both methods to the same time-series and discuss the results. The approach is applicable quite generally to any system of coupled nonlinear oscillators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet bispectral analysis for the study of interactions among oscillators whose basic frequencies are significantly time variable.

Bispectral analysis, recently introduced as a technique for revealing time-phase relationships, is extended to make use of wavelets rather than Fourier analysis. It is thus able to encompass instantaneous phase-time dependence for the case of two or more coupled nonlinear oscillators. The method is demonstrated and evaluated by use of test signals from a pair of coupled Poincaré oscillators. It...

متن کامل

Time-Frequency Analysis of EEG Signal processing for Artifact Detection

EEG is widely used to record the electrical activity of the brain for detecting various kinds of diseases and disorders of the human brain. EEG signals are contaminated with several unwanted artifacts during EEG recording and these artifacts make the analysis of EEG signal difficult by hiding some valuable information. Time-frequency representation of electroencephalogram (EEG) signal provides ...

متن کامل

Nonlinear cardio-respiratory interactions revealed by time-phase bispectral analysis.

Bispectral analysis based on high order statistics, introduced recently as a technique for revealing time-phase relationships among interacting noisy oscillators, has been used to study the nature of the coupling between cardiac and respiratory activity. Univariate blood flow signals recorded simultaneously by laser-Doppler flowmetry on both legs and arms were analysed. Coupling between cardiac...

متن کامل

Identification of Instantaneous Modal Parameter of Time-Varying Systems via a Wavelet-Based Approach and Its Application

This work presents an efficient approach using time-varying autoregressive with exogenous input (TVARX) model and a substructure technique to identify the instantaneous modal parameters of a linear timevarying structure and its substructures. The identified instantaneous natural frequencies can be used to identify earthquake damage to a building, including the specific floors that are damaged. ...

متن کامل

Introduction of low to high frequencies bispectrum rate feature for deep sleep detection from awakening by electroencephalogram

Background: Accurate detection of deep sleep (Due to the low frequency of the brain signal in this part of sleep, it is also called slow-wave sleep) from awakening increases the sleep staging accuracy as an important factor in medicine. Depending on the time and cost of manually determining the depth of sleep, we can automatically determine the depth of sleep by electroencephalogram (EEG) signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010